首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4384篇
  免费   1013篇
  国内免费   783篇
化学   2666篇
晶体学   121篇
力学   519篇
综合类   76篇
数学   1087篇
物理学   1711篇
  2024年   16篇
  2023年   92篇
  2022年   204篇
  2021年   295篇
  2020年   371篇
  2019年   242篇
  2018年   224篇
  2017年   213篇
  2016年   278篇
  2015年   238篇
  2014年   218篇
  2013年   474篇
  2012年   216篇
  2011年   244篇
  2010年   219篇
  2009年   286篇
  2008年   262篇
  2007年   252篇
  2006年   278篇
  2005年   213篇
  2004年   231篇
  2003年   179篇
  2002年   169篇
  2001年   118篇
  2000年   94篇
  1999年   82篇
  1998年   65篇
  1997年   63篇
  1996年   43篇
  1995年   51篇
  1994年   37篇
  1993年   26篇
  1992年   22篇
  1991年   25篇
  1990年   19篇
  1989年   13篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   23篇
  1984年   17篇
  1983年   6篇
  1982年   8篇
  1981年   12篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1969年   1篇
  1957年   2篇
排序方式: 共有6180条查询结果,搜索用时 203 毫秒
41.
The batch emulsion copolymerization of vinyl acetate with different vinyl silane functional monomers (vinyl trimethoxysilane [VTMS], vinyl triethoxysilane [VTES], and vinyl silanetriol [VSTO]) is studied. The nature of the silane strongly affects the development of the microstructure and crosslinking ability of the latexes. A combination of techniques (Soxhlet extraction, centrifugation, assymetric‐flow field flow fractionation AF4/MALS/RI) shows that the factor controlling the molar mass and crosslinking density is the degree of hydrolysis of the alkoxysilane, producing higher molar masses and degrees of crosslinking when the degree of hydrolysis is high. Thus, the copolymer containing VSTO produced a very crosslinked latex, the one with VTMS produced a latex with a low degree of crosslinking in the wet state that can yield high degrees of crosslinking upon drying, and the latex with VTES do not produce significant amounts of crosslinking neither before nor after drying.  相似文献   
42.
Six new O-alkyldithiophosphate nickel complexes with dcpf ligand, [(dcpf)Ni(S2P{O}OR)] (dcpf = 1,1′-bis (dicyclohexylphosphino)ferrocene, R = CH3 ( 1 ), CH3CH2 ( 2 ), Ph ( 3 ), 4-MeC6H4 ( 4 ), PhCH2 ( 5 ) and PhCH2CH2 ( 6 )), have been synthesized by the treatment of dcpf with ((RO)2PS2)2Ni in satisfactory yields. These complexes were characterized by elemental analysis, spectroscopy (FTIR, UV–vis, 1H, 13C, and 31P NMR), thermogravimetric analysis and single crystal X-ray diffraction. The nickel atom in 1 , 2 ·CH2Cl2, 3 ·CH2Cl2, 4 ·2CH2Cl2·THF, and 2( 5 )·hexane adopts a slightly distorted square-planar coordination environment finished by two phosphorus atoms of dcpf ligand and two sulfur atoms of O-alkyldithiophosphate ligand. Furthermore, the electrochemical properties for complexes 1 – 6 were also investigated by cyclic voltammetry. With the addition of 120 mM trifluoroacetic acid (TFA), the turnover frequency (TOF) values for 1 – 6 are estimated to be 1243.83, 1046.54, 1331.71, 2545.29, 1899.03, and 1191.37 s−1, with the overpotential (η) values of 0.62, 0.58, 0.71, 0.67, 0.60, and 0.56 V, respectively. The result of electrochemical studies indicates that all complexes can be used as efficient molecular eletrocatalysts for the reduction of protons to hydrogen in the presence of TFA in MeCN.  相似文献   
43.
Electrocatalysis is the most promising strategy to generate clean energy H2, and the development of catalysts with excellent hydrogen evolution reaction (HER) performance at high current density that can resist strong alkaline and acidic electrolyte environment is of great significance for practical industrial application. Therefore, a P doped MoS2@Ni3S2 nanorods array (named P-NiMoS) was successfully synthesized through successive sulfuration and phosphorization. P-NiMoS presents a core/shell structure with a heterojunction between MoS2 (shell) and Ni3S2 (core). Furthermore, the doping of P modulates the electronic structure of the P-NiMoS; the electrons transfer from the t2g orbital of Ni element to the eg empty orbital of Mo element through the Ni−S−Mo bond at the Ni3S2 and MoS2 heterojunction, facilitating the hydrogen evolution reaction. As a result, P-NiMoS exhibits excellent HER activity; the overpotential is 290 mV at high current density of 250 mA cm−2 in alkaline electrolyte, which is close to Pt/C (282 mV@250 mA cm−2), and P-NiMoS can stably evolve hydrogen for 48 h.  相似文献   
44.
Strongly correlated catalysts can be understood from precise quantum approximations. Incorporating properly electronic correlations thus let’s define Spin rules in catalysis, opening a new door towards optimum compositions for the most important reactions for a sustainable future.  相似文献   
45.
Based on previous works, most of the transition metal phosphides (TMPs) were directly prepared by decomposing NaH2PO2 with the precursors at high temperatures, which resulted in different degrees of phosphidation in the final product. Therefore, it is necessary to design an innovative approach to enhance the degree of phosphidation in the material using crystal defects. Here, oxygen-vacancy iron oxide/iron foam (Ov-Fe2O3/IF) was firstly prepared by generating oxygen vacancy in situ in an iron foam through heating in vacuum conditions. Subsequently, FeP/IF was formed by phosphating Ov-Fe2O3/IF. Under the effects of oxygen vacancies, oxygen-vacancy iron oxide could be completely phosphatized to produce more active sites on the surface of the material. This, in turn, could result in a catalyst with exceptional hydrogen evolution activity. Thus, the successful fabrication of FeP/IF demonstrated in this work provides an effective and feasible way for the preparation of other high-efficiency catalysts.  相似文献   
46.
本文基于密度泛函理论预测了一种用于可见光范围光催化制氢的新型二维非金属纳米材料,该材料可以由HTAP分子脱氢聚合得到,具有良好的结构稳定性,且带隙为2.12 eV,可以实现可见光区域的光捕获. 材料的带边能级位置恰好包裹水的氧化还原电位,有利于实现全光解水. 电子的迁移率略高于空穴的迁移率,有利于光生载流子的分离. 光生电子可以提供足够的驱动力使得析氢反应自发进行.  相似文献   
47.
Electrocatalytic hydrogen gas production is considered a potential pathway towards carbon-neutral energy sources. However, the development of this technology is hindered by the lack of efficient, cost-effective, and environmentally benign catalysts. In this study, a main-group-element-based electrocatalyst, SbSalen , is reported to catalyze the hydrogen evolution reaction (HER) in an aqueous medium. The heterogenized molecular system achieved a Faradaic efficiency of 100 % at −1.4 V vs. NHE with a maximum current density of −30.7 mA/cm2. X-ray photoelectron spectroscopy of the catalyst-bound working electrode before and after electrolysis confirmed the molecular stability during catalysis. The turnover frequency was calculated as 43.4 s−1 using redox-peak integration. The kinetic and mechanistic aspects of the electrocatalytic reaction were further examined by computational methods. This study provides mechanistic insights into main-group-element electrocatalysts for heterogeneous small-molecule conversion.  相似文献   
48.
Perovskite is a promising non-noble catalyst and has been widely investigated for the electrochemical oxygen evolution reaction (OER). However, there is still serious lack of valid approaches to further enhance their catalytic performance. Herein, we propose a spin state modulation strategy to improve the OER electrocatalytic activity of typical perovskite material of LaCoO3. Specifically, the electronic configuration transition was realized by a simple high temperature thermal reduction process. M-H hysteresis loop results reveal that the reduction treatment can produce more unpaired electrons in 3d orbit by promoting the electron transitions of Co from low spin state to high spin state, and thus lead to the increase of the spin polarization. Electrochemical measurements show that the catalytic performance of LaCoO3 is strongly dependent on its electronic configuration. With the optimized reduction treatment, the overpotential for the OER process in 0.5 M KOH electrolyte solution at 10 mA cm−2 current density was 396 mV, significantly lower than that of the original state. Furthermore, it can mediate efficient OER with an overpotential of 383 mV under an external magnetic field, which is attributed to the appropriate electron filling. Our results show that electron spin state regulation is a new way to boost the OER electrocatalytic activity.  相似文献   
49.
50.
In an attempt to create a polymer brush-based platform for the systematic study for anti-biofouling surfaces, the benefits of surface initiated, visible light-mediated radical polymerization are utilized to fabricate well-defined, chemically ambiguously patterned surfaces. A variety of analytical tools are used to illustrate the precise tuning of surface chemistry and thoroughly characterize spatially well-defined, hydrophilic/hydrophobic surfaces composed of poly(ethylene glycol methacrylate) and poly(trifluoroethyl methacrylate) with chemical definition on the micron scale. Advantages of both visible light-mediated photopolymerization and traditional copper-catalyzed atom transfer radical polymerization are combined to achieve both high spatial control and expanded monomer tolerance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 253–262  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号